

AI-POWERED FINTECH: AR FORECASTING WITH DATABRICKS & MLFLOW

Floriant Sturm & Julie Vanackere 12/06/2024

Nice to meet you!

Julie Vanackere Data scientist

daidalo.

Floriant Sturm Co-founder

2

Outline

2 main topics

Business perspective	Technical perspective
 Why Accounts receivable (AR) forecasting? How do we approach this? How can AR forecasting become a plug & play solution and what are the technical requirements? 	 Automated infra deployments Standardized feature engineering Standardized ML training An automated ML lifecycle Monitoring for customer confidence

Business perspective

Why did we focus on AR forecasting? What is AR forecasting?

Accounts-Receivable

- ~ Outstanding invoices
- Currently companies use a <u>reactive</u> <u>approach</u> to chase "late-payers"
 - They contact them after it is too late
 - They know their outstanding invoices
- Big issue
 - "Cash flow is the pulse of the company"

Forecasting

- Predicting <u>when</u> a customer will pay their invoice in the future
- This will help you to anticipate
 - Who will pay late
 - How much cash is to be expected in the next x period
- Contact strategy: incentivize customers that are likely to pay late = proactive approach

Why did we focus on AR forecasting? Why is it relevant for all companies?

- Quick win!
 We only need the historical invoice data to get started
- Predicting future cash flows reduces:
 - Credit risk
 - Plan expenses, investments & potential savings

6

Why did we focus on AR forecasting? A tangible example

Context:

- Production company of pharmaceuticals
- Need to <u>expand</u> the production plant and <u>invest</u> in machines
- Do we have the <u>cash flow</u> to cover the costs?

How do we approach this?

How do we provide a sustainable approach?

Where do we generally focus on?

- Identifying the business problem
- Strategy focus on a sustainable solution
 - Provides direct impact
 - Efficient implementation
 - Easy maintainable by the client
- Business validation
- Coaching & development

How do we look at Data Science?

- We try to go beyond, but how?
 - We keep the baseline structure (gathering data, etc...)
 - ...but the core business use case is tackled by Data Science
- Data Science means ML, AI,...
 whatever suits the business case best

8

How can AR forecasting become a plug and play solution?

What were our initial requirements?

Standardized ML training

Technical perspective

Deploy Azure infrastructure quickly through Terraform

Infrastructure-as-code that deploys:

- Resources
 - Databricks 😂
 - ADF 🚂
 - Storage Account 🧮
 - Keyvault 💡
- Networking
- Roles and responsibilities
- 2 environments
- All automated through scripting

What does terraform look like?

```
module "e61-tff" {
 source = "../e61-tif"
 tags
                  = var.tags
 global_settings = var.global_settings
 resource groups = var.resource groups
 networking = {
   vnets
                                      = var.vnets
   route_tables
                                      = var.route_tables
    routes
                                      = var.routes
    network security group definition = var.network security group definition
  security = {
   keyvaults = var.keyvaults
   keyvault access policies = var.keyvault access policies
 storage accounts = var.storage accounts
 analytics = {
    databricks workspaces = var.databricks workspaces
```

```
role_mapping = var.role_mapping
```

Automated infra deployments

We start with a Modern Data Platform in Azure

Automated infra deployments

This facilitates a development – (acceptance) – production set up

- Because of terraform different <u>environments</u> with the same resources can be easily setup
- Because of the CICD pipelines, <u>code</u> can be reproduced in these environments
- But how do we do this practically?

Automated infra deployments

Afterwards, we deploy our code to Databricks and ADF using Devops CI/CD

- Development environment
 - Code is stored in <u>Azure devops</u>
 - <u>Databricks repo</u> code is deployed in Databricks workspace (ML models)
 - <u>ADF GIT</u> is deployed to ADF live mode
 - Production environment

<u>Stable code</u> (finished ML models) runs in prd environment if used for critical business processes = extra layer

Fully managed through scripts

How can AR forecasting become a plug and play solution?

What were our initial requirements?

 Standardized feature engineering

Standardized ML training

Standardized feature engineering

Feature table for AR forecasting

Invoice-level features (mandatory)

- Year invoice was created
- Month in which the invoice is due
- Document type
- # Line items in invoice
- The invoice amount

Customer-aggregated features (optional)

- % previous invoices late
- # of previous invoices
- Whether the last invoice was late (0/1)
- Preferred payment date

Data collections (optional)

- When and with what action did we contact the customer?
- At which dunning level?
 - 1: sending reminder
 - 2: calling
 - 3: giving a fee

16

Standardized ML training

We use the specified features, to make predictions

Standardized feature engineering

•

Where do we store these features & labels?

Delta tables

- Delta files stored on data lake
- ACID
- Natively integrated with Unity Catalog
- Upserts & truncate insert

How can AR forecasting become a plug and play solution?

What were our initial requirements?

 Standardized feature engineering

Standardized ML training

Standardized ML training

What is AutoML and how do we use it?

- AutoML: interface & code based model training in databricks
- Can be used for <u>exploration</u>, but we use it for <u>model training</u> as a whole
- The best model (according to R2) is automatically stored in Mlflow registry
- We track the feature importance to iterate on

<pre>run_name = "AutoMl Mode"</pre>	1"			
databricks.automl.regre	ss(dataset = traini	ing_data_filtered,		
	<pre>target_col = '</pre>	'nr_days_late",		
	exclude_framev	<pre>vorks = ["xgboost"] ,</pre>		
	experiment_nam	<pre>me = "AR forecasting AutomL ,</pre>		
	timeout minute	= - 2 ,		
)	came ou c_marrie co	5 - 5		
Experiments >				
Configure AutoML expe	eriment			
1 Configure	2 Join Features	3 Train	- 4 Evaluate	
Compute Configuration			^	
Cluster (Databricks Runtime 9.1 LTS ML or above) ①				
ML cluster			~	
Experiment Configuration			^	
* ML problem type				
Regression			~	
Predict a continuous value based on in	nput features. For example, estir	mate a house's price based on its size and location.		
Input training dataset				
Browse dbw, dev_we_01	.silver.basetable			
* Prediction target				
Quantity			~	
Experiment name				
Advanced Configuration (optional)			^	
Evaluation metric				
R-squared			~	
* Training frameworks ①				
lightgbm × sklearn × xgboost ×	c		*	
 Timeout (minutes) 				
10				
Time column for training/validation/te	esting split ①			
Join features (optional) > Start A	utoML »			

How can AR forecasting become a plug and play solution?

What were our initial requirements?

- Standardized feature engineering

Standardized ML training

✓ Versions

 \odot Δ All Active 2

Version

Version 3

⊘ ↓ Version 1

Stage

Staging

Production Archived

Experiments \bullet

Databricks

Everything we need:

igodol

 \bullet

Model registry with lifecycle mgmt. •

We use MLFlow – natively integrated in

Python SDK (automation \bigcirc) \bullet

An automated ML lifecycle

Created by

floriant.sturm@element61.be

floriant.sturm@element61.be

floriant.sturm@element61.be

How do we manage the model lifecycle?

Registered at =+

2022-11-22 20:00:11

2022-11-22 19:59:46

2022-11-22 19:46:45

An automated ML lifecycle

How do we choose to update the production model?

- Difference between technical KPI (R2) and business KPI (# Days late)
- Technical KPI as benchmark
 - <u>No actions</u> towards customers
 - <u>Gradually improves</u> when retraining the model
- Business KPI as benchmark
 - Switch to Business KPI when technical KPI gradually worsens
 - <u>Actions have been taken towards customers</u>
 - The ML model is used in the business for a while now
- Let's say we focus on the second scenario

An automated ML lifecycle

How do we choose to update the production model?

We are solving a business problem, so

- We use a business <u>KPI</u>
 RMSE on actuals
- We retrain the model with new data every week.
- The new model becomes a staged model that « shadows » the production model
- We only update the production model when our business KPI improved

How can AR forecasting become a plug and play solution?

What were our initial requirements?

- Standardized feature engineering

Standardized ML training

Monitoring for customer confidence

How do we enable trust? - the most important 'KPI' of an AI-solution

Dashboard for customers:	Dashboard for data scientists:
Build insights in the actuals vs predictions	Monitor data & models over time:
 Amount/invoice that will be overdue per customer How many days this will be overdue Action list: which customers to target? 	 Model versions - keep track of historic versions Model performance - technical KPIs Model performance - business KPIs
• comparison of cash flows to juture investments	

DATA⁺AI SUMMIT

Monitoring for customer confidence

Example of a customer insights dashboard

- Periodic buckets with amounts
- Actionable dashboard

Contact those with large amounts with 90+ days predicted

How can AR forecasting become a plug and play solution?

What were our initial requirements?

Standardized
 feature
 engineering

Standardized ML training

Build

pipeline

Release

pipeline

©2024 Databricks Inc. — All rights reserved

Ľ4

Orchestration

30

Great! All requirements fulfilled!

Let's have a chat!

Julie Vanackere Data scientist

daidalo.

Floriant Sturm Co-founder

https://www.linkedin.com/in/julie-vanackere/

https://www.linkedin.com/in/floriantsturm/